Skip to main content

Precipitation


Precipitation

Chemical precipitation is the formation of a separable solid substance from a solution, either by converting the substance into an insoluble form or by changing the composition of the solvent to diminish the solubility of the substance in it. 
Precipitation is the creation of a solid from a solution. When the reaction occurs in a liquid solution, the solid formed is called the 'precipitate'. The chemical that causes the solid to form is called the 'precipitant'. Without sufficient force of gravity to bring the solid particles together, the precipitate remains in suspension. After sedimentation, especially when using a centrifuge to press it into a compact mass, the precipitate may be referred to as a 'pellet'. Precipitation can be used as a medium. The precipitate-free liquid remaining above the solid is called the 'supernate' or 'supernatant'. Powders derived from precipitation have also historically been known as 'flowers'. When the solid appears in the form of cellulose fibers which have been through chemical processing, the process is often referred to as regeneration.

PRINCIPLES Of Precipitation
A number of parameters can be used to separate a sample of interest from impurities by reducing its solubility, and removing it from a solution as a solid.  First, changing the ionic strength of the solution can change a substance’s solubility. This often involves the addition of extra salt (also called salting out), or the addition of a counter-ion, which forms a less soluble species with the compound of interest.

Figure: Solubility equilibria are affected by ionic strength, pH, and temperature.


                                      A compound of interest (yellow) is separated from impurities (red) by changing


                                      It’s solubility in a given solvent.


Changing the pH of a solution may change the net charge of the compound. At a certain pH, the net charge becomes zero (also called isoelectric point) and the compound becomes less soluble in water, eventually forming a solid. Temperature also affects solubility, as higher temperature increases solubility of solids. 
The rate of solid formation determines relative purity. In general, the term precipitation refers to the formation of a solid at a rapid pace, thereby producing an amorphous sample with some impurities trapped within. This is common in salting out and pH change-induced processes. When this process is slowed down, the impurities are not trapped within the compound and a relatively pure solid is produced. This technique is employed in re-crystallization. In this process, a compound is dissolved in enough solvent to be just at the saturation point at an elevated temperature. This saturated solution is then allowed to cool down slowly. As the solution cools, the solubility of the component decreases and the compound in excess of the solubility forms a well-ordered solid (otherwise known as crystals) instead of an amorphous solid. Impurities in the solution do not get trapped as the slow process allows the removal of these impurities at the surface of the solid before they are trapped.

Figure: Difference between precipitation and recrystallization

Once the solid has formed (whether as a crystal or as a precipitate), it should be separated from the rest of the mixture. Filtration is one way to separate them. This employs a porous material which selectively inhibits the passage of the solid material but not the solution.
Centrifugation is another way to separate the precipitate from the rest of the mixture. Centrifugation uses centripetal acceleration to separate mixtures based on their densities. Since solid is denser than the aqueous solution, the solid sediments at the bottom of the container. The solid is also called the pellet and the aqueous solution, the supernatant. The supernatant can then be decanted or extracted using a pipet or syringe. Crystals are fragile and centrifugation is often not employed to separate them from the solution.
APPLICATIONS of Precipitation

Precipitation reactions are applied to many sample preparation processes. As mentioned before, they can be used to remove salts or specific ions depending on their solubility equilibria. They can also be used to remove proteins and other biomolecules from mixtures.

In biochemistry, most processes such as protein, lipid, and DNA isolation involves precipitation reactions, centrifugation and filtration methods to purify samples. And while most of these processes have been fully standardized into commercial kits, there is still a lot of room for optimization, as different biological molecules require different conditions.

Comments

Popular posts from this blog

Analysis of A Temporary Matter by Jhumpa Lahiri

A Temporary Matter A Temporary Matter is a story about grief and the secrets people keep from one another. Husband and wife Shukumar and Shoba are reeling from the loss of their child six months earlier. They avoid each other and their friends, Shoba filling her time with work and Shukumar procrastinating in finishing his dissertation. A deus-ex-machina in the form of systematic power outages allows for intimacy between the couple not achieved since the death of their son. The importance of communication within a marriage is a prevalent theme in  Interpreter of Maladies . Here the sorrow of the lost child causes a communication breakdown in the relationship of Shukumar and Shoba. This silence between them eventually destroys them because, in their grief, Shukumar and Shoba grow to become different people. Since they no longer share experiences, the couple grows apart. Their final secrets are painful ones – Shoba intends to move out and Shukumar violates the wishes of his

Blood Buffer System

Buffer A buffer is an aqueous solution that resists changes in pH upon the addition of an acid or a base . Also, adding water to a buffer or allowing water to evaporate from the buffer does not change the pH of a buffer significantly. Buffers basically constituent a pair of a weak acid and its conjugate base, or a pair of a weak base and its conjugate acid. Blood buffer The bicarbonate buffer system is an acid-base homeostatic mechanism involving the balance of carbonic acid (H 2 CO 3 ), bicarbonate ion (HCO3-), and carbon dioxide (CO 2 ) in order to maintain pH in the blood and duodenum , among other tissues, to support proper metabolic function. Catalyzed by carbonic anhydrase , carbon dioxide (CO 2 ) reacts with water (H 2 O) to form carbonic acid (H 2 CO 3 ), which in turn rapidly dissociates to form a bicarbonate ion (HCO3-) and a hydrogen ion (H + ) as shown in the following reaction. C O 2 + H 2 O ⇄ H 2 C O 3 ⇄ H C O 3 − + H + {\displaystyle {\rm {CO_

Analysis of The Treatment of Bibi Haldar by Jhumpa lahiri

The Treatment Of Bibi Haldar Bibi Haldar is a 29-year-old woman who suffers from a disease that no doctor, priest or therapist could quite understand and therefore each of them offered differing 'cures'. Bibi was infamous for her illness, and everyone knew of her suffering. ''She was not pretty. Her upper lip was thin, her teeth too small. Her gums protruded when she spoke.” All Bibi wants is to live life like any other normal girl: get married, have children and be loved. Unfortunately, her illness precludes her from achieving the desired normalcy. As the story unfolds, Bibi eventually finds her 'cure', not through any medical prescription but in a way anyone could ever have imagined. Jhumpa Lahiri Nilanjana Sudeshna "Jhumpa" Lahiri was born in London and brought up in South Kingstown, Rhode Island. Brought up in America by a mother who wanted to raise her children to be Indian, she learned about her Bengali heritage from an early age